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ABSTRACT 

With the aim to develop personal protection systems with improved mechanical 

properties and reduced weight, this research combined graphene with tungsten disulfide, 

and studied this hybrid system included in epoxy resin.   

A novel plasma production process generated nanometric size tungsten oxide 

(WO3) spherical particles. The nanospheres were sulfurized to produce inorganic-

fullerene type tungsten disulfide (IF-WS2). The plasma IF-WS2 particles exhibited 

smaller particle size, characteristic hollow cores and larger angle facets than IF-WS2 from 

commercial WO3, and morphological characteristics that are correlated with improved 

mechanical properties.   

Exfoliated graphene sheets were prepared from graphite nanopowder through 

oxidization and subsequent exfoliation at 800°C in inert atmosphere.   

Sample microstructures were characterized by XRD, SEM, TEM and FIB.   

Protocols to fabricate hybrid graphene/IF-WS2 with nanoscale dispersions were 

developed. Hybrids from in-situ routes and physical mixtures of individual components 

were included in epoxy matrices for nanoindentation tests. Results showed the Young’s 

modulus (normalized for bare epoxy) increased 12.23%, while hardness increased 

27.87% through inclusion of 1% wt loadings of graphene/IF-WS2. These results were 

compared to carbon nanofibers/IF-WS2 hybrid composites recently produced by the 

functional materials research group at NPS. This research represents a step toward 

development of lightweight nano-architectures for advanced personal protection systems.   
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I. INTRODUCTION 

A. Overview 

This manuscript presents some of the ongoing efforts at the Naval Postgraduate 

School to develop new lightweight materials for personal protection applications. Hybrid 

nanostructures combining carbon based architectures (Graphene) and ceramic particles 

(Inorganic Fullerene type WS2) are the central focus of the study, along with their epoxy-

based composites. 

Current armor systems employ diverse strategies to stop a penetrator and absorb 

or attempt to disperse its impact energy. Multiple research groups have been aiming to 

develop new ballistic resistant materials, from ballistic fibers to combinations of those 

with other strong organic and inorganic (ceramic, metal) material layers. However, even 

with the novel materials that might allow a penetrator to be stopped and an open wound 

prevented, the dissipating energy from an impact could still cause non penetrating 

injuries, known as blunt force trauma. Moreover, the most effective systems we currently 

employ contain materials that will add considerable weight to the wearer—a situation that 

poses the challenge to develop materials that could reduce the possibility of blunt force 

trauma while reducing the weight of the overall component.  

B. Advances in Personal Protection Systems 

Current personal protection body armor in use is a vast improvement over the 

animal hides and chain mail our descendants wore many years ago [1]. Today’s body 

armor contains a plate comprised of ceramic or metal combined with some fabric 

designed to stop not only bullets but shrapnel and other materials fragments that could 

result from an improvised explosive device (IED). High performance fibers used in 

personal protection should have low density, high strength and high energy absorption 

capabilities. Glass, aramid (Kevlar, Twaron), and high performance polyethylene 

(Dyneema, Spectra) fibers have been already introduced into the market to fulfill the need 

for materials with such properties. The most well-known of the personal protection 

fabrics is Kevlar, first created in the 1970s by Dupont, which is both ballistic and stab-
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resistant [2]. Regarding the ceramic and metal plates, clay and boron nitride are the most 

common in the former category, while steel, titanium and aluminum for the later.  

The lighter weight option (seen in Figure 1) that could be used in the field is to 

wear only fabric materials such as the one listed above; essentially, the user wears many 

layers of the fabric compressed into a vest and foregoes the heavier option of the ceramic 

or metal plates. This dramatically reduces the weight of the material being worn, but 

lowers the level of threats the body armor will be able to withstand. Often such operating 

environments force soldiers to choose between wearing body armor that fully protects 

them, or a lighter weight body armor. The first option might cause them to underperform, 

or in the most extreme cases, lose consciousness while wearing the armor, since they can 

already be carrying up to 70 pounds of gear, while the second option will increase their 

vulnerability. Furthermore, the body armor, even without the ceramic or metal plates, is 

very restrictive, often not allowing the wearer a full range of motion which poses a whole 

new level of threats simply by altering the way the wearer moves and functions while 

wearing the body armor.   

 
Figure 1. Photograph of two sailors wearing a “light” version of body armor (Image 

used with permission from LT Melanie Chambers and LT Kathryn Johnson). 
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The research for new body armor technology is focused primarily on addressing 

the functionality of the material, reducing the weight levels and increasing wearer 

flexibility. Through our research, we aim to use nanomaterials to develop architectures 

with increased level of protection for our soldiers and sailors while at the same time 

reducing the weight of the systems. 

Nanomaterials have emerged in last decade as an alternative to improve 

mechanical properties of polymeric composites, in particular, carbon nanotubes have 

been extensively studied in diverse systems at various loadings [3–8]. Tungsten disulfide 

nanoparticulates have been extensively used as lubricants and only in recent years, with 

the development of inorganic fullerene type structures of WS2 (IF-WS2), have these 

materials attracted attention as filler in composites for armor applications. Only a few 

attempts have been made to combine either carbon nanofibers or other graphitic 

structures with WS2 spherical particles [9–12]. No published references exist to date with 

regards to hybrids combining graphene and IF-WS2. 

C. Graphene as Component 

Graphene is the name given to a sheet composed from one to a few atomic layers 

of hexagonally bonded carbon atoms. The structure can be described as an infinite two 

dimensional molecule, as the one depicted in Figure 2. The graphite structure is 

composed by a large number of graphene layers kept together by van der Waals 

interactions.  

Graphene is impressively lightweight, it has a theoretical surface to weight ratio 

of 2, 700 m2/g and it is incredibly strong with a calculated tensile strength of ~130  

GPa [13]. The potential applications proposed for graphene arise from several unique 

features: the mechanical strength inherent in the strong covalent bond between adjoining 

carbon atoms in a basal plane, the ability of graphene to be organized into circuit 

elements at molecular scale and the particular chemistry of the edges of its sheets. 

Those properties lend itself to the graphene inclusion in lightweight architectures, 

especially considering the 2D structure of graphene, where 3,000,000 sheets are ~ 1 mm 

thick, which means the thickness of the material can be kept to a minimum. Graphene is a 
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low cost material that can be produced by multiple methods with diverse degrees of 

exfoliation and surface functionalities, which is not a critical factor for its use in basic 

research projects, but certainly an added value for using the material in a large-scale 

implementation of the design.   

 
Figure 2. Graphic representing the 2D structure of graphene [13]. 

D. Tungsten Disulfide Structures 

The most common microstructure found in WS2 consists of expanded layers, 

similar to the ones encountered in graphite. Although, it is the closed cage structure, 

which particles are usually on the nanometer scale, which are the focus in this 

manuscript. 

Carbon was once believed to be the only material able to create nanowires and 

closed geometric shapes such as carbon nanotubes and fullerenes. The closed-cage type 

polyhedral structures, however, are no longer limited to carbon; the discovery of similar 

inorganic forms made from other components, such as WS2 and MoS2 is opening up vast 

new opportunities. These new material nanostructures provide a larger variety of material 

properties, which allow for many more applications. Over time, research has shifted a 

good portion of its focus from organic to inorganic structures. Some of the reasons for 

this shift are as follows: inorganic fullerenes have been broadly tested and are considered 
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safe compared to the toxic organic fullerenes; they are more stable and less reactive than 

the organic fullerenes, and organic fullerenes have a more expensive and toxic growth 

process.   

Chemical bonds are not stable beyond the distance of a few angstroms; as a result, 

general chemistry does not favor materials with empty space. Atoms within materials 

arrange themselves in close proximity to their nearest neighbors in order to maximize the 

interaction between electron clouds and stabilize the chemical bonds between them. 

Consequently, the scientific investigation of hollow-closed structures was almost wholly 

unexplored until the latter part of the 20th century. The first serious inquiries were 

undertaken by Linus Pauling in 1930, where he investigated closed polyhedral and 

tubular forms of asbestos minerals such as kaolinite (alumino-silicate) [14].   However, 

the turning point in the scientific exploration of hollow closed atomic structures occurred 

with the discovery of carbon fullerenes by Kroto, Smalley, and Curl in 1985 and later 

with carbon nanotubes by Iijima in 1991 [15, 16]. The first inorganic fullerene-like 

nanoparticles of WS2 were discovered by Tenne and his colleagues working at the 

Weizmann Institute of Science in 1992 [17]. Via a method of diffusion-controlled 

sulfurization of metal oxides, they were able to empirically prove the existence of such 

phases of inorganic compounds. Shortly thereafter, the discovery of inorganic nanotubes 

and fullerene-like structures led to the establishment of a new field of inorganic 

chemistry; one dealing with the polyhedral or closed-hollow nanostructures of  

materials [18]. A few of the applications recently proposed for such structures include 

processes such as filtering, shielding, lubrication, composites filling, and sensors [19–21]. 

WS2 has been found in morphologies such as nanospheres, nanotubes, 

nanoflowers, nanoribbons, nanoropes, nanoflasks and nanocones [10, 19, 22–29]. 

Depending on the formation scheme and experimental conditions, though under the same 

chemical reaction, these various forms can be obtained.  

The term “Inorganic Fullerene-like” (IF) was coined for the resemblance between 

IF-WS2 to carbon based nested fullerenes, both in properties and in appearance. IFs are 

primarily the spherical layered structures seen in Figure 3. Each layer is weakly bonded 
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to the next by Van der Waals forces and so can be easily exfoliated when damaged 

without altering the inner layers. This property has led many to investigate the tribology 

of these particles which will be discussed later. After many years of research, it was 

determined that for sulfides generated from tungsten oxides both outside-in and inside-

out formation schemes occur. For the more reported outside-in method, the “partially 

reduced core is converted into metal-sulfide in a quasi-epitaxial layer by layer process, 

leading to a nested multilayer core” [18]. If the reaction proceeds to completion, the IFs 

have a hollow core. The reason for the hollow core is seen in the chemistry,  

WO3 + 2H2S → WS2 + 3H2O 

where one sulfur atom replaces one and a half oxygen atoms [21]. In the inside-out 

formation method, the reactants are vaporized and initial nuclei are formed. Eventually 

these structures grow and at a critical size they bend and form IF structures which 

continue to grow and crystallize. When the clusters are smaller than this critical size, 

many point defects and dislocations are found, often resulting in partially closed 

polyhedra [30].   

The decision to use tungsten disulfide (WS2), specifically IF-WS2, was based on 

its properties as a lubricant and its ability to withstand very high shock pressures. Recent 

research has found that IF-WS2 is able to withstand shock pressures of 25 GPa, which 

would be necessary for our application within the matrix of the body armor. It was found 

that in MoS2 with particle size of 80 nm and same inorganic fullerene shape was able to 

withstand shock pressures in excess of 130 GPa [30].  
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Figure 3. Transmission Electron Microscope image of IF-WS2 showing the 

inorganic fullerene structure the brighter core is evidence of a hollow interior. 

E. Thesis Objectives 

The general scope of this thesis is centered on the development of nanometric 

architectures which individual components interaction and light weight could render 

improved impact or shock resistance composites for potential use in personal protection 

systems. In particular, we aimed to design a nanohybrid that combined the potential of 

graphene sheets with the characteristics of IF-WS2. 

Moreover, both graphene and IF-WS2 nanostructures have been prepared by 

diverse routes, but no attempts have been made to design the structures to optimize the 

morphology for impact or shock absorbing properties. For graphene, more than 

individual sheets, agglomerated or crumpled sheets will present the empty spaces and 

flexibility of typical energy absorbing structures. For IF-WS2 a small particle size and 

large angles in the polyhedra are sought, since those characteristics could, according to 

literature in the field, enhance the mechanical properties. No other groups have attempted 

to combine these individual materials before and new protocols to integrate them are 

needed. 

The thesis is divided into five chapters that present in a systematic way how the 

materials were prepared and integrated as hybrids first and epoxy composites later along 
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with the fundaments of the methods and techniques used to characterize their crystal 

structure, microstructure and mechanical properties. All the results are presented in a 

chapter that also discusses the above. The manuscript then summarizes the milestones 

achieved and compares the data with the ones previously found in a similar system, 

CNF/IF-WS2. Suggested next steps to further the research are also included. 

F. Hypothesis 

The use of graphene and IF-WS2 hybrid nanomaterial will improve the 

mechanical properties of composites in which the hybrid will be included, in particular, 

epoxy based systems. The light-weight of the new Graphene/IF-WS2 composites could 

allow current personal protection systems to increase user protection, while the protection 

system weight is maintained or reduced. 

G. Naval Relevance of the Topic 

A positive outcome of this research will provide better understanding of which 

nano-structure characteristics could help dissipate the energy of an impact or the 

associated shock wave. The improvement of the material properties used in body armor 

will add to the level of protection, flexibility and desire for wearing the vest by the 

soldiers and sailors in the operating environments.   

 



 9 

II. EXPERIMENTAL METHODS 

A variety of equipment and techniques to create both individual nanopowder 

components and the hybrid composite consisting of the IF-WS2 and graphene were 

employed. This chapter will summarize the steps followed for the fabrication protocols, 

the operational principles for the techniques and conditions of analysis.   

A diagram (see below) will be used to guide the reader through the different 

materials that were synthesized throughout the manuscript. As a new topic or synthesis is 

covered, the diagram will highlight it to provide emphasis and reference for where that 

step lies within the overall research. For the subheadings (i.e., graphite oxide production), 

the diagram is abbreviated to emphasize the material covered, expanding to the large 

diagram when a new heading (i.e., Composite Material Production) will be discussed.   

 

A. Synthesis Of Individual Component Nanoparticles 

In order to integrate graphene and IF-WS2, precursors for the same had to be 

generated; for graphene, graphite oxide (GO) and for IF-WS2, WO3. This section will 

describe the synthesis of both.   

1. Graphite Oxide Production 

This section covers the production methods used to synthesize graphite oxide, 

using both graphite flakes and nanopowder, thermally exfoliated graphite oxide and 

inorganic-fullerene tungsten disulfide. For the production of GO we used both graphite 

flakes and graphite nanopowder. Graphite oxide was produced based on a further 

modification to the method reported by Marcano et al[8]..   
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Figure 4. Stepwise production of Graphite Oxide. 

The synthesis (see Figure 4) used a 9:1 mixture of 90 mL H2SO4 (Sigma-Aldrich 

ACS reagent 95.0–98.0%, catalog number 258105–500ML ) to 10 mL H3PO4 (Sigma-

Aldrich ACS reagent, ≥ 85 wt. % in H2O, catalog number 438081–500ML). To this we 

added graphite flakes (Aldrich Graphite Flakes, particle size +100 mesh, ≥ 75% min, 

catalog number 332461–2.5KG) in the amount of 0.75 g, or graphite nanopowder 

(Aldrich Graphite Powder, < 20 µm, synthetic, catalog number 282863–25G ) for reasons 

that will be described in detail later. Following the addition of the graphite nanopowder 

the mixture was sonicated for one minute until the mixture was homogenous. Using a 

Bransonic Ultrasonic Model 2510R-MTH Sonicator (see Figure 5, Left) operated at room 

temperature. 

The mixture was then placed on a Corning hotplate and stirrer (AC input 120 V, 

4”x5”) , used in conjunction with a Spinbar® magnetic stir bar at 240 rpm (PTFE-coated 

octagonal, size 1”x3/8”) to ensure mixtures in solution remained as a homogeneous 

dispersion (see Figure 5, Middle). 
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Then 4.5 g of KMnO4 (Mallinckrodt Baker Inc., ACS Reagent, 3227–01, 500 g) 

were added, at which point a slight exothermic reaction was observed, which increased 

the temperature to 35°C.   

This mixture was allowed to continue stirring under the vent hood for five and a 

half hours, at which point ice cubes made from 150 mL of distilled water were added to 

the mixture. Once the ice cubes were completely dissolved, 1.5 mL of H2O2 (Sigma-

Aldrich Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent, 

catalog number 216763–500ML) were added drop wise. At this point in the oxidation 

process, bubbles were formed and a more exothermic reaction was observed, with the 

temperature increasing to 45°C or 55°C for the graphite flakes and graphite nanopowder 

respectively. The mixture was stirred for another hour and then allowed to settle 

overnight (see Figure 6, Left).  

The particulates settled to the bottom of the beaker, and the excess liquid was 

removed via pipetting. The remaining material was divided between two 50 mL 

centrifuge tubes. The mixture was then centrifuged for five minutes at 2000 rpm, in a 

Hermle Z300 Centrifuge (see Figure 5, Right) fitted with a 4 x 50 mL rotor.   

After being centrifuged the excess liquid was drained from the top and replaced 

with 20 mL of deionized water. The centrifuge tube is shaken until no mixture remains 

adhered to the sides. The tubes were replaced in the centrifuge and again set at 2000 rpm 

for five minutes. The excess liquid was drained and replaced with 20 mL of 30% HCl 

solution (prepared from Sigma-Aldrich Hydrochloric acid ACS reagent, 37%, catalog 

number 320331–500ML) and shaken before being centrifuged. The use of the 30% HCl 

solution was repeated three more times (or until the excess liquid did not have remnant 

MnO2 evident by a transparent solution). The final washing step was performed twice 

with 20 mL of ethanol (Sigma-Aldrich, ACS Reagent, ≥ 99.5%, 200 proof, absolute, 

catalog number 459844–500ML), and the excess liquid drained. The mixture was poured 

into a small dish (see Figure 6, Middle) for drying in a Nalgene vacuum desiccator (with 

stopcock, overall H 262 mm) using a pump to achieve vacuum, which was used to dry the 

resultant graphite oxide (see Figure 6, Right). 
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Figure 5. Left) Bransonic Ultrasonic Sonicator  Middle) Corning Hotplate and 

Stirrer  Right) Hermle Z300 Centrifuge with 4x50 mL Rotor. 

 
Figure 6. Left) Mixture of Graphite Powder with Acids and KMnO4 and H2O2 at the 

end of the Reaction Time  Middle) GO prior to being placed under vacuum  Right) 
Nalgene Vacuum Desiccator with Graphite Oxide Drying. 

2. Thermally Exfoliated Graphite Oxide (TEGO) Production 

After being placed under vacuum, the GO was thoroughly dried and ready for 

exfoliation. For each run 0.05 g of GO were measured and hand crushed in a mortar and 

pestle for fifteen minutes, the material was then spread evenly along the bottom of an 

alumina boat (Sigma-Aldrich, Coors combustion boat, high-alumina, 70 L x 14 W x 10 

mm H, 5 mL capacity, catalog number Z561738–1EA). The boat was sealed inside the 

Thermo Scientific Lindberg Blue M 1200C tubular furnace (see Figure 7, Left). 

This furnace has a single point temperature control and a heated length of twelve 

inches; for synthesis a one-inch diameter quartz tube was used with a ceramic boat 

inserted and sealed up with high-temperature O-rings inside of stainless steel fittings. An 

inert nitrogen atmosphere was used for the exfoliation, which flow was regulated using a 

MKS multi-gas controller 647C (4 channels) with an initial pressure of 20 psi supplied 

from the gas cylinder, or supplied via a Matheson flow meter (E100) (see Figures 7, 

Middle and Right). 
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Figure 7. Left)  Thermo Scientific Lindberg Blue M Tubular Furnace   Middle)  mks 

Multi Gas Controller 647C. Right)  Mattheson E100 Flowmeter for Hydrogen Sulfide. 

The furnace was heated to 800°C and the flow of the N2 dropped to 15 SCCM. 

Once 800°C was achieved, the material was left at this temperature for fifteen minutes. 

The TEGO is cooled to room temperature and then collected. The yield of the synthesis 

was typically 0.02 g of TEGO was collected (some material was lost during collection).   

 
Figure 8. Stepwise production of TEGO from GO. 

3. Inorganic Fullerene Type WS2 Production 

Three different methods for producing the IF-WS2 were attempted, one used 

commercial WO3 and the other two used ammonium tetrathiotungstate (NH4)2WS4 as a 

precursor and will be discussed in detail below.  

a. From Ammonium Tetrathiotungstate Salts 

Ammonium Tetrathiotungstate decomposes upon heating to generate WS2 

as a single solid byproduct. It has been previously used by Chen et al. to provide WS2 

fibers [22].   

For this synthesis 0.13 g of (NH4)2WS4 was measured and then crushed by 

hand in a mortar and pestle for fifteen minutes. The material was then evenly dispersed 

into the bottom of an alumina boat and sealed inside the quartz tube of the furnace. The 



 14 

atmosphere was purged with N2 at 200 SCCM for twenty minutes, at which point the 

furnace was turned on and heated to 600°C. The material remained at 600°C for two 

hours in the same atmosphere of N2. After two hours the furnace was shut off, and the 

material allowed to cool to room temperature, with the N2 left flowing the entire time. 

Upon reaching room temperature, the N2 flow was shut off and 0.084 g of WS2 was 

collected.   

 
Figure 9. Stepwise production of WS2 from (NH4)2WS4. 

b. From Plasma Generated Tungsten Oxide 

Using the plasma torch (see Figure 10), the precursor of (NH4)2WS4 was 

finely crushed and carried through the plasma region of the plasma torch at atmospheric 

conditions using Argon gas. As the precursor was carried into the discharge region the 

material was subjected to temperatures in excess of 3500°C for very small amounts of 

time, less than a second. The material was altered in the plasma discharge region and the 

spherical particulate shape was achieved in the chimney where rapid cooling takes place, 

and the new particulates were captured on the filter after the cooling [31]. 

 
Figure 10. Aslex Atmospheric Microwave Plasma System used to create WO3. 
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An Aslex Atmospheric Microwave Plasma System operating at 900 Watts, 

2455 MHz frequency was used for the production of spherical WO3. The ammonium 

tetrathiotungstate was used or a precursor and Argon as plasma gas. Argon/air mixtures 

were employed as carrier gas.   

To sulfurize the product, the WO3 from plasma, 0.067 g was evenly 

dispersed in the bottom of an alumina boat and then place inside the quartz tube and 

sealed up inside the furnace. The sample was purged in N2 for twenty minutes at 200 

SCCM before being heated to 900°C. Once the temperature reached 900°C, the N2 flow 

rate was reduced to 100 SCCM and H2S was added in at 3.98 SCCM. The flows 

remained unchanged for three hours, while the temperature was stable at 900°C. After 

three hours the H2S gas flow was discontinued. The material was allowed to cool to room 

temperature in the N2 atmosphere. Once cooled, the N2 flow was turned off and 0.069 g 

of WS2 were collected.   

 
Figure 11. Stepwise procedure for producing Plasma IF-WS2 from (NH4)2WS4. 

c. From Commercial Tungsten Oxide Particles 

Commercial Tungsten (IV) Oxide, 0.67 g (Sigma-Aldrich, ~20 µm, 

catalog number 232785–100G), was hand crushed in a mortar and pestle for fifteen 

minutes and then evenly dispersed in the bottom of an alumina boat. An identical 

procedure to the one described in section 3b above was followed to sulfurize the 

particles,  
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Figure 12. Stepwise procedure for production of WS2 from commercial WO3. 

B. Fabrication of Hybrid Composite Graphene/IF-WS2 

For the creation of the hybrid materials, to keep the weight at a low level, the 

inclusion of the IF-WS2 will be kept to around 1%. Since the graphene sheets weigh 

much less, the inclusion of 1% should be a minor addition in weight, and will also allow 

for comparison of results to ENS Michael Moberg’s thesis work.  

 

Two different methods were used to create the hybrid composites, a material 

comprised of 99% thermally exfoliated graphite oxide and 1% inorganic fullerene-

tungsten disulfide. The first method was to create the hybrid composite in-situ, while the 

second method was to create the individual components, as described above, and 

combine the components physically to create the hybrid composite.   
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1. In-Situ Production of Graphene/IF-WS2 

The integration of graphene with IF-WS2 could be performed in a number of 

various ways. The first method employed consisted of taking 0.15 g of the commercial 

WO3, 0.3 g of the GO and 1.6 g of urea; it was hand crushed together for fifteen minutes 

before depositing evenly on the bottom of an alumina boat. The boat was placed inside 

the quartz tube within the furnace and purged with N2 for twenty minutes at 509.78 

SCCM. After the twenty-minute purge, the furnace was heated to 600°C and the material 

left at that temperature for fifteen minutes. The non-sulfurized sample, comprised by 

graphene and WO3, then cooled back to room temperature and 0.25 g of sample were 

collected for analysis. 

 
Figure 13. Stepwise procedure for in-situ non-sulfurized composite. 

An alternate variant used for fabrication of the hybrid graphene/IF-WS2 involved 

the use of 0.10 g of (NH4)2WS4 with 0.11 g of GO and 0.57 g of urea which were hand 

crushed together in a mortar and pestle for fifteen minutes before being distributed along 

the bottom of an alumina boat. The sample was placed in the furnace and purged with N2 

for twenty minutes at 330.17 SCCM; after the purge was completed the furnace was 

heated to 600°C. Once the furnace was stable at 600°C, the material was heated for 

fifteen minutes, after which the furnace was shut off and the material cooled to room 

temperature. Once the material reached room temperature it was collected for analysis.   

 
Figure 14. Stepwise procedure for first in-situ sulfurized composite. 
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In the initial stages for hybrid generation ammonium tetrathiotungstate salt with 

urea were used, although the final product contained irregular shape particulates and 

large size distribution of the same. Given that result, the production of IF-WS2 was 

limited to the use of WO3 as a precursor. The urea was initially added to aid the 

exfoliation of the GO powder, although in later steps its use was discontinued in favor of 

a combined exfoliation and sulfurization process. Graphene exfoliation and removal of 

oxygen groups in the structure are more efficient when they occur at higher temperatures, 

so subsequent exfoliations occurred at 800°C without the inclusion of urea. 

After refining the protocol, the primary method utilized to produce the 

graphene/IF-WS2 hybrid, that will be now referred to as in-situ, consisted of mixing 

0.0059 g of WO3 plasma and 0.7996 g GO. The components were combined and ground 

with mortar and pestle for fifteen minutes, placed in an alumina boat and inserted in the 

furnace. The sample was purged in N2 at 330.17 SCCM for twenty minutes and then 

heated to 800°C for exfoliation. Once the furnace was stable at 800°C the sample was 

exfoliated for ten minutes. The sample was then allowed to cool to room temperature and 

collected 0.1731 g of non-sulfurized composite.   

 
Figure 15. Stepwise procedure for non-sulfurized composite from plasma WO3. 

The sample was purged in 330.17 SCCM N2 for twenty minutes, after which time 

the furnace was set to heat to 900°C. At the same time, the N2 flow was reduced to 

150.52 SCCM and H2S was added to the flow at 3.9839 SCCM. Once the furnace 

temperature reached 900°C the material was left to sulfurize for three hours. After three 

hours the furnace was turned off and the flow from the H2S was stopped. The N2 flow 

was set to 150.52 SCCM until the sample reached room temperature, after which the flow 

was halted. The sample was then collected, and 0.0263 g of sulfurized hybrid were 

obtained.   
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Figure 16. Stepwise procedure for sulfurized composite from WO3 plasma. 

This above method was further modified, the sample was kept in the furnace after 

initial exfoliation in N2 and then heated to 900°C in H2S atmosphere to sulfurize the 

tungsten oxide by using the remaining non-sulfurized composite, 0.0421 g, and placed in 

an alumina boat inside the furnace. The material was then purged with N2 at 200 SCCM 

for twenty minutes, after which it was heated to 900°C for three hours. When the heating 

was started, the flow for the N2 was reduced to 100 SCCM, while H2S was added at 

3.9839 SCCM. After three hours the furnace and H2S were shut off, and the material was 

allowed to cool to room temperature. There was 0.0235 g of sulfurized composite 

material collected.   

2. Physical Mixture of WS2 with Graphene 

This method combined 0.0009 g of sulfurized WO3 plasma (now IF-WS2 plasma) 

and 0.009 g TEGO (from nanopowder) in a sample vial. The vial was then sonicated for 

five minutes at room temperature and then stored.   

 
Figure 17. Stepwise procedure for physical mixture of sulfurized composite. 

C. Generation of Epoxy Resin Composites 

Epoxy resin mounts were used to suspend the nanomaterials in order to measure 

the hardness and Young’s Modulus of the materials against a baseline established by a 

mount created solely of epoxy. For this purpose, Struers Speci-Fix 20 Kit (see Figure 18) 

was used. 
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Figure 18. Struers Speci-Fix 20 Kit used to create epoxy mounts. 

The epoxy mount was created using the two separate solutions, one being the 

resin and the other the hardening agent. By volume, it was required to use a ratio of 5.1:1 

of the resin to the hardening agent. Once the two solutions were combined, there were 60 

minutes during which the material would remain pliable and allow the addition of the 

nanomaterials. The epoxy molds held approximately 27 mL of the epoxy, and for the 

samples, 1% loading of the epoxy was desired, which meant that often a smaller amount 

of epoxy was created and then backed with the pure epoxy mixture.   

To create the epoxy mount, a sterile plastic cup was used to hold the material, and 

the required amount of resin was measured and poured into the plastic cup. To this the 

1% of nanomaterials was added and stirred vigorously for two minutes, after which it was 

sonicated for three minutes to create a homogenous mixture. To this mixture, the required 

amount of hardening agent was added and then stirred vigorously for a period of two 

minutes, after which the mixture was sonicated for another three minutes until the 

mixture was homogenous. After the sonication, the solution was poured into the 1 ¼” 

silicone mold (see Figure 19, Top).   

For several mounts it was necessary to let them cure for 24 hours before creating 

a ‘neat’ solution, comprised solely of resin and hardening agent, which was poured into 

the mold to act as a backing for the epoxy with nanomaterials. The epoxy molds were 

covered for a week to facilitate a complete curing of the material. After one week passed, 

the mounts were removed from the mold. 
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After 30 days, the mounts were prepared for nanoindentation (see Figure 19, 

Middle), whereby it was necessary to finish the surface of the epoxy mount, as a highly 

polished surface was desired to get accurate results from nanoindentation. The first step 

for polishing involved grinding down the surface on different grit sandpapers. The 

sandpaper was wetted, and then the puck was ground in the following order:  240-grit, 

320-grit, 400-grit and lastly 600-grit sandpaper. When the results of the grinding were 

satisfactory, the mounts were then polished using polishing wheels fitted with polishing 

media at 1 µm and 0.05 µm respectively. Once a highly polished finish was achieved, the 

epoxy mounts were ready to proceed to nanoindentation (see Figure 19, Bottom).   

 

 

 
Figure 19. Top) Silicone molds with 1% nanomaterials loading in the epoxy  Middle) 
Epoxy mounts removed from the molds (center being neat and outer two with 1% 
loading). Bottom) Highly polished surface of epoxy mounts in tray of nanoindentor. 
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III. CHARACTERIZATION 

 

Once the material, individual or composite, was synthesized, it was ready for 

analysis to determine the composition, crystalline structure, morphology, particle size, as 

well as identify any impurities that were present. Various techniques were used to 

achieve this end, specifically X-ray diffraction (XRD), transmission electron microscopy 

(TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy 

(EDS), focused ion-beam milling (FIB), and nanoindentation. 

 

A. X-Ray Diffraction 

The materials synthesized, both individual and composite, consisted of solid 

powders and were crystalline in nature, and provide the ideal platform to be analyzed by 

X-ray diffraction.  

The software suite then analyzed the reflected X-rays to provide the data in a set 

of counts that was represented in graphical form, which revealed the various d-spacings 

that are unique to the individual nanopowder being analyzed. These d-spacings were 

compared to the database of the International Centre for Diffraction Data. The patterns 

that match were given a percentage ranking, which provided the operator the ability to 

select only patterns that indicated a match based on the counts and d-spacing. 
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The X-ray diffractometer used is a Phillips Type PW1830/40 Analytical X-ray 

B.V. with a PW1830 generator. The samples were placed on a zero-background slide, 

made from a silicon crystal and inserted in the sample holder for analysis. The software 

was programmed with the following parameters for each XRD run: 

 

Start Position [°2Th] 5.000 

End Position [°2Th] 70.000 

Step Size [°2Th] 0.0200 

Scan Step Time [s] 2.0000 

Scan Type Continuous 

Offset [°2Th] 0.0000 

Anode Material Cu 

K-Alpha1 [Å] 1.54060 

K-Alpha2 [Å] 1.54443 

K-Beta [Å] 1.39225 

K-A1/K-A2 Ratio 0.50000 

Generator Settings 10 mA, 10 kV 

Table 1. Settings used for XRD runs to determine composition of nanopowder 
materials. 

Once the settings were established, the XRD was powered on and the settings 

gradually increased till 30 kV and 35 mA were reached. After this was achieved, the 

software suite ran the selected program (see parameters in Table 1), which took one hour 

and 18 minutes to complete.   

All the reflections shown in the XRD patterns correspond to pure phases, except 

when stated otherwise in the XRD figures. 
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Figure 20. Image of X-ray diffractometer. 

B. Transmission Electron Microscopy 

The TEM operates similar to an optical microscope; however, a beam of electrons 

is used instead of a light source to obtain images of the material being examined. The 

nanopowders were suspended in ethanol and then deposited on a mesh slide to obtain the 

very thin layers required when using a TEM. In Transmission Electron Microscopy, the 

electron beam was provided by an electron source, which was directed to the material 

being analyzed. The electrons then pass through the specimen, after which they were 

filtered by a series of electromagnetic lenses and finally displayed on a viewing screen. 

Because the specimen had been prepared to have little density on the mesh of the slide, 

this allowed the electrons to give an image indicative of the structure of the material, 

including all the nuances of the material, such as the inorganic-fullerene type rings that 

should be visible in the WS2 samples.   

The TEM data was collected at the University of New Mexico with a JEOL 2010 

high resolution transmission electron microscope (HTEM) and JEOL 2010F FASTEM 

field emission gun scanning transmission electron microscope (STEM/TEM) equipped 

with Gatan GIF image filtering system. Samples were prepared by dispersing the 

powders in a few mL of ethanol and a drop of the dispersion was placed in a copper 

holey-carbon TEM grid where the ethanol was allowed to evaporate prior to the sample 

being viewed. 
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C. Scanning Electron Microscopy 

The SEM also uses electrons, instead of a light-source, to project an image of the 

surface of the sample. The electron gun provided a beam of electrons, which passed 

through an anode, magnetic lens and coils to focus the beam. The specimen was loaded 

onto a stage and placed inside a vacuum chamber, where the sample would be scanned by 

the electron beam, allowing for the surface of the material to be viewed using the in-lens 

detector. Through manipulation of the stigmation and alignment, an image of the surface 

was achieved; at lower magnifications a broad picture of the surface was obtained, useful 

for particle size determination. At higher magnifications, it was possible to discern 

differentiations in individual particles, as well as focus on the dispersion patterns.   

SEM images were collected using a Zeiss Neon 40 Crossbeam Scanning Electron 

Microscope with a Schottky type field emission system. The system was set to 20 kV and 

0.33 x 10–6 mA. Images were collected at 2K, 4K, 8K, 16K, 32K, 40K, 60K, and 90K 

magnifications to get both a broad and close-in feel for the structure of the samples. 

Images were collected with the software and stored in jpeg format. 

 
Figure 21. An image of the Zeiss SEM used to capture surface images of the samples. 

 Furthermore, the SEM images were used to obtain particle size distributions. The 

image was evaluated using open-source software, ImageJ, to manually measure each 

particle’s diameter in diverse pictures representative of each sample to generate a 

histogram of the number of particles vs. size distribution.  
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D. Energy-Dispersive Spectroscopy 

Similar to the XRD technique above, EDS also uses a focused beam of electrons 

to interact with the surface of the nanopowder placed inside the chamber of the scanning 

electron microscope. When the electron beam interacts with the surface of the sample, 

there are secondary electrons expelled from the sample, which gives information 

concerning the composition of the sample. These secondary electrons are ejected from 

the orbitals which causes X-rays to be released, and the EDS allows for these X-rays to 

be collected to determine the characteristics of the sample. The focused beam is primarily 

used in spot analysis on the surface of a given nanopowder, though it is also used for a 

scan over a broad portion of the nanopowder surface [32]. 

The EDS measurements were carried out using EDAX Pegasus system having an 

Apollo 10 Silico Drift Detector.  Data was collected and analyzed using Genesis 

Spectrum software. The data is presented in the same way as for the XRD, with the 

counts on the vertical axis and the energy (in keV) on the horizontal axis. These counts 

provide a chemical analysis of the makeup of the nanopowder. A broad scan and spot 

scans were used to determine the chemical composition of the nanopowders. 

E. Focused Ion-Beam Milling 

The focused ion-beam milling process was performed to reveal more information 

about the cross-sectional structure of the nanoparticles. The sample is mounted in the 

vacuum chamber shared by both the scanning electron microscope and the energy-

dispersive spectrometer, after which an electron gun to emit Ga+ ions over the surface of 

the sample being viewed. This ion beam, if focused correctly, will allow for images to be 

collected of the cross-sectional layers of the sample. As the beam interacts with the 

surface, a new layer will be exposed, providing a picture of the structural makeup of the 

sample. This allowed for FIB to verify the information obtained via TEM.   

The FIB milling process was conducted with a Focused Ion Beam (FIB) column 

attached to the Zeiss SEM mentioned above, fitted with a Ga source. Electron beam 

energy ranged from 10–20 kV.  Focused ion beam cuts were made using a Ga+ ion source 

with 2 nA/30 kV for the primary cuts and 50 pA/30 kV for polishing cuts.     
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F. Nanoindentation 

To complete a measurement of mechanical properties using quasi-static testing, a 

finite amount of sample can be mounted in epoxy, where the sample will be subjected to 

instrumented indentation via a nanoindentor. Using nanoindentation the samples’ 

hardness and Young’s Modulus were obtained and plotted accordingly. Using a 

Berkovich tip, a three-sided pyramid diamond tip (measured and calibrated using a fused 

silica standard, serial TB15523), there is a known geometry and properties for the tip that 

would allow us to find out the Young’s Modulus and Hardness of the material using the 

following equations, derived from the Oliver-Pharr Method [45]: 

!
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!
+ (!!!!)
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Equation 1. Equation to find the Reduced Young’s Modulus [45] where 𝐸!is 

Reduced Young’s Modulus and 𝐸! is the Indenter Young’s Modulus 

 

𝐻 =
𝑃!"#
𝐴  (ℎ!)

 

Equation 2. Equation to find the Hardness [45] where Pmax is the max load, A is 

the contact area and hc is the contact depth. 

To get the results necessary, the Agilent software was used in the pre-

programmed mode for XP-Basic Modulus/Hardness at Depth, this returned the desired 

Young’s Modulus and Hardness. This program operates using quasi-static testing, and as 

previously establish by Moberg et al. [32] the loss modulus for this test with epoxy 

matrices could be considered negligible. See Table 2.   
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Calculation Inputs 

% Unload in Stiffness Calculation 50.000 % 

Poisson’s Ratio 0.400  

Test Inputs 

Allowable Drift Rate 0.0500 nm/s 

Depth Limit 2000.000 nm 

Peak Hold Time 10.000 s 

% to Unload 90.000 % 

Strain Rate 0.08 /s 

Table 2. Parameters for nanoindentation. 

For characterization using nanoindentation, an Agilent Technologies Nano 

Indentor G200 (see Figure 22) was used to determine the Young’s modulus and hardness 

of the epoxy samples. The nanoindentor used a measurement of the load and 

displacement into the surface of the material to determine the volume of material 

displaced by the tip. When the tip was inserted into the material, there is both elastic and 

inelastic properties; the elastic being the energy that will allow the material to rebound 

when the tip was removed. The inelastic property was a function of the material that does 

not rebound once the tip was removed. The information desired was contained in the 

storage modulus, and thus the elastic energy was the primary focus. 

The samples were placed in the sample holder and loaded onto the stage, where 

the sample was then viewed under an optical microscope to determine correct placement 

with respect to a standard. Once the placement was established the software was used to 

program a run of 20 indents, from which the average and standard deviations of the 

modulus and hardness were calculated [32].   
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Figure 22. Agilent Technologies Nano Indentor G200 used for characterization via 

nanoindentation. 
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IV. RESULTS AND DISCUSSION 

In this section the results from testing and characterization will be discussed, as 

well as the justification for selection of the specific methods used and major findings. In a 

similar manner as used before, the results will be presented using a graphic diagram to 

guide the reader through the process, from the synthesis of the individual components to 

the final generation of the hybrid composite.   

A. Individual Components 

 

1. Commercial Graphite Nanopowder to GO to TEGO 

Multiple processes for the production of graphene and graphite like sheets and 

particles have been reported; chemical vapor deposition (CVD) and related methods that 

generate free-standing graphene sheets [11, 33], thermal exfoliation of graphite oxide [34, 

35], and chemical reduction techniques that employ graphite oxide as a precursor and 

reducing agents such as hydrazine or urea and additives to eliminate oxygen groups 

[36,37] are some examples. 

From the approaches mentioned above, the exfoliation of graphite oxide presents 

a simple synthetic route that produces higher yields when compared to other options. The 

method consisted of oxidizing graphite layers to promote a separation between its sheets 

(sp2 bond plane, hexagonal honeycomb network typical of graphene) followed by an 

exfoliation at high temperature. The first step was meant to include oxygen species in 

between layers, in the form of epoxides or alcohols, while the second would promote 

their elimination, rendering individual randomly oriented sheets. 

Individual	
  Component	
  
Produc3on	
  

• Graphite	
  Oxide	
  (GO)	
  
• Thermally	
  Exfoliated	
  
GO	
  (TEGO)	
  
• IF-­‐WS2	
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As mentioned in the experimental methods, the production of graphite oxide was 

initially produced using a modified Hummer’s method, which called for using 

commercial graphite flakes as the precursor [8]. Since this research was looking to create 

large sheets of graphene, the use of graphite flakes would be ideal because the larger our 

precursor, the greater the likelihood that our final graphene sheets would be large. 

However, while analyzing the commercial graphite flakes to determine particle sizes by 

SEM, we found smaller irregular shaped particles from which EDS spectra displayed 

silicon peaks (see Figure 23). Commercial graphite nanopowder (Sigma-Aldrich, < 20 

nm) presented only carbon peaks when studied by SEM EDS and was used as the 

graphene precursor in all cases.   

 
Figure 23. Left) X-ray spectra for GO made from graphite nanopowder  Right) 

Chemical peaks for GO made from graphite flakes, showing silicon impurities. 

Figure 24, SEM observation of commercial graphite nanopowder, was 

representative of the precursor sample, and had a layered microstructure with sheet 

lengths ranging from 200 nanometers to several micrometers (up to 20 micrometers 

according to the figure). The sheet thickness appeared to be slightly less than 200 

nanometers on average.   
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Figure 24. SEM image of Commercial Graphite Nanopowder.  

After the production of the GO had been refined to the one listed in the 

experimental methods, the GO produced was evaluated using XRD, where the d-spacing 

was calculated using the 2θ values, in order to determine the shifts that occurred during 

the transformations from commercial graphite nanopowder to GO and finally to TEGO. 

The respective XRD graphs are presented in Figure 25. 

The three more intense peaks for commercial graphite nanopowder were located 

close to 25, 45 and 55 degrees (2 Theta) and correspond to d values of 3.366 Å, 1.681 Å, 

and 2.033 Å, miller indices (002), (004) and (101), respectively. The primary indicator 

we were looking for to know the commercial graphite flakes had transitioned to graphite 

oxide was the shift of the primary peak from ~25° to ~10°.  (Note that the graphs for 

XRD are given with units of 2 Theta on the x-axis.)   

The graphite oxide created from the commercial nanopowder presented peaks 

close to 10 and 45 degrees (2 Theta), corresponding to d-spacings of 9.100 Å and 2.136 

Å. The primary peak in the material, miller index (002), has now shifted from ~25° to the 

near 10°, an indication that the oxide groups have attached to the graphite particles to 

form the GO. The d value on the graphite oxide sample varies with synthetic method and 

degree of oxidation and represents the distance in the z direction of the crystal structure 

of graphite where the oxygen species attach.   
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The d-spacing for the exfoliated TEGO were 3.681 Å and 6.207 Å, miller indices 

(002) and (101), respectively. The presence of wide peaks in the XRD pattern, along low 

intensity peaks, might be interpreted as the TEGO material not being as crystalline as the 

specimens of commercial graphite nanopowder and GO. Notice that the intensity for the 

peaks has dropped considerably; the commercial graphite nanopowder had more than 

8,000 counts, the GO intensity dropped to around 800 counts, and our finished product, 

TEGO, had just 60 counts. This drop in intensity, combined with a more noticeable 

background signal in the samples could indicate a material with less long range order in 

the z direction and the presence of more defects within the sp2 layered structure. 

Furthermore, the most intense peak has shifted from the 10 degrees back to 25 degrees, 

with the disappearance of the former. This peak shift can be taken as verification that the 

oxygen groups have been removed from the sample. 
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Figure 25. Top) XRD graph for commercial graphite nanopowder  Middle) XRD 

graph for GO  Bottom) XRD graph for TEGO 
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Material 2 Theta (°) {h j k} d-spacing (Å) 

Commercial 

Graphite 

Nanopowder 

26.457 (002) 3.366 

54.447 (004) 1.681 

44.067 (101 2.033 

GO 9.718 (002) 9.100 

42.298 (101) 2.136 

TEGO 24.613 (002) 3.681 

43.332 (101) 6.207 

Table 3. Summary of XRD data for G,GO and TEGO. 

 The presence of the oxygen species in the GO structure could alternatively be 

confirmed by spectroscopic techniques as found in the literature [38], although XRD had 

already provided enough evidence of its inclusion. 

 
Figure 26. SEM image of graphite oxide. 

Compared to the SEM image of the commercial graphite nanopowder (Figure 24), 

the GO SEM micrographs (Figure 26) showed more space between sheets, indication of 

the presence of oxygen groups.  
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Once the exfoliation at high temperature had occurred, the TEGO produced 

presented the morphological characteristics illustrated in Figure 27.   

 
Figure 27. SEM image of Thermally Exfoliated Graphite Oxide. 

Rather than individual sheets, the material exfoliated in a direction perpendicular 

to the sheet orientation, exhibiting a splayed edge in what could be called a honeycomb 

type structure. It is worth noting that this microstructure shares characteristics with the 

honeycomb structures commonly used in radiation absorbing foams. Each fan-shaped 

structure could reach length in the micrometer range, and does not present any relative 

orientation with respect to each other.   

This lack of uni-directional orientation may provide both the necessary structure 

and flexibility allowing the material to behave with more rigidity while still being able to 

maintain the movement characteristic of graphene sheets. If the morphology found were 

individual graphene sheets, this would allow the sheets to slide into one another when 

impacted.  

2. IF-WS2 

Many fabrication methods have been proposed and tested to generate inorganic 

fullerene type tungsten disulfide particles. These include, but are not limited to, electron-

beam irradiation activation, arc discharge, thermal decomposition, hydrothermal or 

solvothermal synthesis, sonochemical process, sublimation-condensation technique, laser 
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ablation, template synthesis, and combinations thereof [21, 23]. By far the most used 

come from solid-gas or gas phase reactions performed inside of tube furnaces. In such 

scheme, a sample containing tungsten oxide or halide is placed in a boat inside the oven 

and subjected to a sulfur rich environment. Due to the increased heat the tungsten 

material reacts with the sulfur and forms tungsten disulfide. The first of the solid-gas 

processes, was used by Tenne et al. and led to the discovery of IF-WS2, consisted of 

heating tungsten oxide in N2+H2+H2S atmospheres at 850oC. The process was relatively 

simple, relying on only one reaction to take place: the sulfurization of the tungsten 

around the oxide template in an outside-in process. The particles created from this 

process were reported to be between 90 and 120 nm on average [39]. 

Throughout the many experiments performed on IF structures, it has been found 

that the inorganic fullerene characteristics depend to a large extent on the nature and 

morphology of the precursor. The shape and size of the precursor particles readily 

forecast the general shape and size of the IF products. In the outside-in formation process, 

the size and shape is determined by the first formed layer of WS2. Being able to control 

the precursor morphology would be one possible way to ensure consistent products and is 

the reason why this thesis has undertaken such task.   The IFs are thermodynamically 

stable structures only when synthesized below certain temperatures and reaction times. A 

range of particles are formed at different temperatures, beyond a particular window of 

conditions the particles take the form of the macroscopic platelets, phase commonly 

found when bulk WS2 is finely ball milled. Finely grinding WS2 is the easiest way to 

obtain nanometric WS2 although such phase does not have the desired properties found in 

IFs. 

We attempted to generate IF-WS2 from ammonium tetrathiotungstate, commonly 

referred to as an ammonium salt, and from commercial WO3. Given that the commercial 

particulate morphology in the latter case was difficult to control, we used a third 

approach where the ammonium salt was employed as a precursor to generate spherical 

WO3 by plasma methods, which was then converted to IF-WS2 by a sulfurization step. 

The next sections summarize our findings. 
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a. WS2 from Ammonium Tetrathiotungstate Salts 

The use of ammonium tetrathiotungstate as a precursor for the WS2 

represented a facile route for producing WS2 since its thermal decomposition generates 

directly the targeted solid product. The crystal structure of the powders was studied by X-

ray diffraction methods and their morphology by Scanning Electron Microscopy. In the 

former, the main peaks of the WS2 structure could be identified, although despite 

changing the acquisition rates of the spectra, only very low intensity peaks were detected, 

indicating a product with low crystallinity.   

 
Figure 28. XRD graph of WS2 from salts. 

The values for the d-spacings of the main peaks (see Figure 28) 

correspond to 2.640 Å, 1.557 Å and 2.286 Å, miller indices (101), (110) and (002) 

respectively. SEM examination of the sample revealed large agglomerates combined with 

submicron particles, with only few of them presenting semi-spherical WS2 shapes (see 

Figure 29 Left and Right). 
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Material 2 Theta (°) {h j k} d-spacing (Å) 

WS2 from Salts 33.748 (101) 2.640 

59.337 (110) 1.557 

14.158 (002) 2.286 

Table 4. Summary of XRD data for WS2 from salts. 

 
Figure 29. Left) SEM image of WS2 from (NH4)2WS4  Right) SEM image of WS2 

from (NH4)2WS4  

b. WS2 from WO3 Commercial 

As mentioned before, tungsten oxide has been successfully used to 

produce particles with IF-WS2 morphologies when the precursor size is adequate. 

However, commercial WO3 nanoparticles purchased from different vendors contain a 

myriad of particle sizes, and it is only through ball milling processes or finely grinding 

with a mortar that consistent submicron sizes can be generated. Bulk WO3 exhibits a 

series of polymorphs, which can be conveniently described as deviations from the ideal 

cubic ReO3 structure. At room temperature, the WO3 structure is monoclinic (c-WO3 

phase with space group P21/n) and can be approximated by a distorted (2x2x2) 

arrangement of the ideal ReO3 type unit cells. The lattice parameters for this phase are 

a=7.297Å, b=7.539Å, c=7.688Å, and b=90.91 [16]. 
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Analysis of crushed powders by XRD (see Figure 30) presents the typical 

pattern for WO3 just described, with the main peaks located close to 25 and 35 degrees 

and multiple smaller intensity peaks. 

 
Figure 30. XRD graph for WO3 commercial. 

The values for d-spacing are 3.680 Å, 3.840 Å and 2.636 Å, miller indices 

(200), (220) and (021) respectively. The sharp peaks illustrate the highly crystalline 

nature for this particular sample. 

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

WO3 Commercial 24.328 (200) 3.680 

34.183 (220) 3.480 

23.338 (021) 2.636 

Table 5. Summary of XRD data for WO3 commercial. 
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Figure 31. SEM image of hand crushed WO3 commercial. 

The SEM was used to verify the shape of the WO3 particles (see Figure 

31); there are two primary shapes we viewed for the WO3, an angular semi-trapezoidal 

shape, and the desired spherical shape, which would give rise to the IF-WS2 particles that 

are the desired end product.   

In any case, the particles were sulfurized for a period of 3 hours to 

generate IF-WS2. The expected process will follow the outside-in front to convert the 

outer layers first and then evolve towards the particle interior. Despite a large treatment 

time, the sample XRD patterns retain some of the original WO3 peaks (located close to 25 

degrees). The rest of the spectra are consistent with a well crystalized WS2 structure. See 

Figure 32. This result constitutes evidence the presence of WO3 in the WS2 product and 

could be explained by the outer layers of the particles being sulfurized and preventing 

more sulfur to diffuse into the particle core to completely react, leaving a trace of oxide 

inside.   
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Figure 32. XRD graph of WS2 from WO3 commercial that shows the presence of 

WO3 after sulfurization. 

The d-spacing values are similar, though shifted from those found in the 

WS2 produced from (NH4)2WS4, where the peak values represent d-spacing of 6.138 Å, 

1.577 Å and 2.680 Å, miller indices (002), (101) and (008), respectively.   

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

WS2 from WO3 

Commercial 

14.398 (002) 6.138 

58.512 (101) 1.577 

33.343 (008) 2.680 

Table 6. XRD data for WS2 from WO3 commercial. 

Residual)WO3)peaks)
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Figure 33. SEM image for WS2 from WO3 commercial.  

SEM images of the converted phase reveals that particles have irregular or 

semispherical shapes (see Figure 33). The particle size distribution for this sample is 

presented in Figure 34, with a calculated average particle diameter of 102.6 nm and a 

minimum size of 10.3 nm and a maximum size of 871.7 nm.   

 
Figure 34. Histogram for particle size distribution for WS2 from WO3 commercial. 
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The data above shows that 76.5% of the WS2 produced in this sample was 

≤ 200 nanometers. However, the goal was to achieve a sample at or close or below 100 

nanometers that exhibits the spherical shape of the desired IF-WS2. Nevertheless, the 

result is a positive one since it is very close the one reported in the literature of 90–120 

nm. [40]   

c. WS2 from WO3 Plasma 

A closer look at the commercially available plasma related methods will 

include materials deposition, removal, patterning and modification of its electrical 

properties. Plasma techniques based on argon or oxygen discharges are responsible for 

the generation of Al, W and superconducting films, while oxygen discharges have been 

utilized to grow Si, Si3N4 and SiO2 films. Boron halide discharges are used for B 

implantation in silicon and diverse compositions (i.e., CF4, O2, Cl2) used to selectively 

remove silicon films. Oxygen discharges can also remove photoresist and activate diverse 

surfaces, even promote polymerization processes. For the micro-fabrication of an 

integrated circuit a considerable amount of steps involve some kind of plasma based 

technology. In contrast with the thin film fabrication, the approaches to generate 

particulate and free standing materials are not usually focused on plasma methods. Apart 

of the creation of “islands” and clusters by sputtering techniques, usually grown to 

eventually form extended films, plasma based methods have found a niche at the thin 

film technology industry and have opened a way to other techniques, such as the ones 

based on colloids, microemulsions and sol gel approaches for approaches for particles 

and free phases generation. 

NPS creates plasmas using an aerosol through microwave plasma system 

that operates at or close to atmospheric pressure, which has been used to generate micron 

and nanoparticles for catalyst, sensors, batteries, propants and other applications. From 

metallic, alloy, oxides, complex oxide systems to composite carbon/metal, oxides/carbon 

and combinations of oxides with different properties [15, 21, 39,40], along with 

homogeneous dispersions metal/matrices, our team has been able to combine phases at a 

micron and nanometer scale with targeted structures/properties for specific applications. 
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Such previous work supports the idea that using atmospheric plasma approaches one can 

control nanostructure characteristics, including morphology, crystal structure and amount 

of oxygen surface groups. Precursor composition, flow rates, for carrier and plasma 

gases, generator power and pressure exhaust are common factors that can be modified to 

tune product features.   

The plasma system offers new exciting possibilities for materials 

preparation, is versatile due to the multiple variables that can be controlled. One can also 

add to the particularities of the system the inherent complications (and potential) of 

plasma discharges: very high temperatures (ca. 2000–3000 degrees C), generation of 

radicals and the existence of neutral and charge species at different temperatures in a 

confined system. 

The shift from using commercial WO3 to an in-house created WO3 

generated using the plasma torch was prompted by the overly large particle size of the 

commercial WO3 mentioned above. The material created using the plasma method 

proved to be more spherical, keeping the inorganic fullerene shape, and contained smaller 

average particle size.   
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Figure 35. XRD graphs of WO3 from plasma. 

The values for d-spacing are very similar to those for WO3 commercial; 

the values are 3.682 Å, 2.631 Å and 1.846 Å respectively (see Figure 35). We have the 

primary peak located ~25°, and the material peaks indicated the crystalline nature of the 

material generated.   

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

WO3 from Plasma 24.178 (200) 3.682 

34.003 (220) 2.631 

23.113 (021) 1.846 

Table 7. XRD data for WO3 from plasma. 

The SEM was used to confirm the more spherical shape of the WO3 

particles produced using the plasma torch (see Figure 36). Initial estimates by visual 
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inspection showed great promise, with less than 1% of the material appearing to be non-

spherical in nature.  

 
Figure 36. SEM image of WO3 from plasma. 

The spherical particles were generated in much larger quantities, though 

there was still a small amount of trapezoidal shaped WO3 particles produced. From the 

SEM, a particle size distribution was obtained by using hand calculation via ImageJ 

software. For comparison with other images, an image at 32Kx magnification was used 

(see Figure 37). 
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Figure 37. Histogram of WO3 plasma Particle Size Distribution. 

From the measurements on ImageJ, the average particle size was 49.3 nm, 

with a minimum particle size of 5.1 nm and a maximum particle size of 356.7 nm, and as 

seen in the histogram, 86% of the particles were ≤75 nm. This size more than exceeds the 

desired particle size of 100 nm, while keeping the inorganic fullerene type structure.   
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Figure 38. XRD graph of combined WO3 commercial and plasma. 

  Figure 38 provides a means for comparison between WO3 generated via 

plasma methods, and the WO3 that is available commercially. The shaper peaks for the 

WO3 commercial are a good indication the particles contain facets less than 90 degrees, 

whereas the less steep peaks for the WO3 plasma indicate a more spherical particle has 

been generated. 
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Figure 39. XRD graph of WS2 produced from WO3 plasma. 

The XRD pattern presented in Figure 39 illustrates peaks that can only be 

associated to WS2; there are no peaks indicating a remaining presence of WO3. This 

complete sulfurization of the material to WS2 means a hollow core was left behind where 

there previously was WO3. These peaks are very similar to those from the WS2 produced 

from WO3 commercial; however, the intensity of the 2nd and 3rd peaks is switched. The d-

spacing is 7.051 Å, 2.695 Å and 1.580 Å, respectively.   

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

WS2 from WO3 

Plasma 

14.338 (002) 7.051 

33.328 (101) 2.695 

58.512 (110) 1.580 

Table 8. XRD data for WS2 from WO3 plasma 
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The main difference among plasma and commercial WO3 particles 

transitioned into WS2 is that the ones from plasma do not show any remnant WO3 but a 

single phase, indication that the reaction continued to completeness and there was no 

WO3 left in the particle cores. The combined XRD graph is displayed below (see Figure 

40), and it provides excellent contrast between the peaks of the differing WS2 samples. 

This makes it clear that the WS2 commercial has the sharper and more intense peaks, 

which also indicates that the material is more crystalline. The WS2 from salts looks like 

noise when compared to that of the WS2 commercial and WS2 plasma—this is due to the 

lack of crystalline particles from this sample. The WS2 plasma has peaks with the 

intensities that indicate the material is crystalline, though not as steep as the WS2 

commercial. The inset in the figure clearly shows a shift to lower angles for the peak 

located close to 14 degrees (14.10 degrees) in the sample generated from plasma 

precursor when compared to the one from commercial WO3 particles. This shift has been 

associated with the IF-WS2 particular structure and it is correlated to a different distance 

between sulfide layers due to an internal strain created as the material sheets curve 

around to form a spherical particle [30]. Such a shift in the (002) reflection of the 

hexagonal structure of IF-WS2 is a strong evidence of a successful completion of process 

to fabricate the desired IF-WS2. The peak from commercial particles is closer to the 

spacing observed in the two-dimensional WS2 crystals.   
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Figure 40. Combined XRD graph of WS2 with inset of WS2 commercial and WS2 

plasma at 14° to show 2 theta shift. 

 
Figure 41. SEM image of WS2 from WO3 plasma. 

The SEM images of the WS2 in Figure 41 confirmed that the production 

via plasma torch was more effective at producing the desired IF-WS2. The average 
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particle diameter (see Figure 42) was 88.4 nm, with a minimum particle size of 24.0 nm 

and a maximum particle size of 24.0 nm, which exhibits the desired particle size of ≤ 100 

nanometers. A histogram was generated to reveal that 69.97% of the particles were ≤ 100 

nanometers.   

 
Figure 42. Histogram of WS2 plasma particle size distribution. 

The IF-WS2 exhibited a size increase of 44.2%, increasing in average 

diameter from 49 nm to 88 nm, though the results were favorable as the overall particle 

diameter was under the 100 nm threshold. After the particles were analyzed using SEM, 

they were studied further with TEM to confirm the IF-WS2 structure’s presence. Images 

of the agglomerated particles were collected (see Figure 43), as well as singular images 

of both the spherical IF-WS2 and the semi-trapezoidal ɛ-WS2  

Although spherical and semispherical particles dominate the microstructure of the 

sample, in the conditions of synthesis used, a small fraction of WS2 possessing a single 

sheet morphology, analogous to graphene in carbon, was produced.  
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Figure 43. TEM image of WS2 cluster. 

It should be noted in the image above that the cluster is comprised 

primarily of the IF-WS2 particles, but there is the presence of the trapezoidal ε-WS2, 

which is shown in greater detail in Figure 44. 

 
Figure 44. TEM image of WS2 plasma showing an isolated non-spherical WS2. 
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Figure 45. TEM image of WS2 plasma showing IF-WS2. 

Figure 45 shows the creation of our IF-WS2 from plasma achieves the 

shape of spherical or polyhedra, hollow cores with a layered structure. The angles of the 

edges are greater than 90°, similar to particles which have been able to withstand shock 

pressures at or greater than 25 GPa [41].  

 
Figure 46. TEM image of WS2 plasma used for gap spacing measurements. 
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The spacing between the layers (see Figure 46) was calculated by hand 

using ImageJ, where the total spacing for ten layers, plus gaps, was 0.628 nm, which 

confirms the lattice separation of highly strained layers typical of IF-WS2 previously 

identified by XRD.   

In Figure 47, images from FIB milling use arrows to highlight the 

presence of hollow cores, which can be seen as the lighter line seen on the particles, and 

is particularly noticeable for the particle in the center of the 64s image.   



 58 

 
Figure 47. Focused Ion Beam Milling was used to remove layer by layer to show the 
existence of hollow cores (indicated by arrows in some particles) as a consistent feature 

in the IF-WS2 sample produced from plasma WO3 precursor. 

B. Hybrid IF-WS2 and Graphene 

The hybrid composites were designed with a 99:1 ratio of graphene to IF-WS2, 

which was established through research conducted by ENS Mike Moberg [32]. Once the 

hybrids were created, the samples were evaluated for exact chemical composition using 
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atomic absorption at the University of New Mexico, which revealed one sample to 

contain an actual ratio of 99.5:0.5 and the other to contain a ratio of 98.5:1.5. 

 

1. In-Situ Hybrid IF-WS2 and Graphene 

a. In-Situ Hybrid from (NH4)2WS4 and TEGO 

Using both XRD and SEM, the material was characterized, and 

established a baseline for the hybrids.   

 

 
Figure 48. XRD graphs of in-situ IF-WS2 and graphene from salts. 
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For Figure 48 the d-spacing was calculated as 2.539 Å, 7.538 Å and 3.619 

Å, miller indices WS2 (103), WS2 (002) and G (002), respectively. We see the peaks 

indicating the presence of both the graphene and the WS2. However, from the production 

of the WS2 from the ammonium tetrathiotungstate, we know that this material does not 

contain the desired IF-WS2.   

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

In-Situ IF-WS2 and 

Graphene from Salts 

35.350 WS2 (103) 2.539 

11.490 WS2 (002) 7.538 

24.550 G (002) 3.619 

Table 9. XRD data for in-situ IF-WS2 and graphene from salts. 

b. In-Situ Hybrid from IF-WS2 Plasma and TEGO 

This material was synthesized and then characterized using both XRD and SEM; 

these results were used for comparison to determine whether or not the material met the 

desired requirements of having both the graphene sheets and the IF-WS2.   

 

Figure 49. XRD graphs of in-situ IF-WS2 and TEGO. 
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These graphs were used to obtain the d-spacing, which were broken down 

in order of peak intensity and are 3.360 Å, 6.038 Å and 2.043 Å, miller indices G (002), 

WS2 (002) and WS2 (101) respectively. In the XRD seen in Figure 49, we again see the 

peaks showing the presence of the graphene and the peak for IF-WS2, while also seeing 

the disappearance of the oxygen groups.   

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

In-Situ IF-WS2 and 

TEGO 

35.350 WS2 (103) 2.539 

11.490 WS2 (002) 7.538 

24.550 G (002) 3.619 

Table 10. XRD data for in-situ IF-WS2 and TEGO. 

 
Figure 50. SEM image of hybrid from WS2 plasma and TEGO. 

The SEM verified that the graphene sheets were adequately exfoliated to 

provide the desired spacing between the sheets (see Figure 50 and 51). As well, the 

spherical IF-WS2 was dispersed throughout the composite. We did see aggregates of IF-

WS2, though these appeared to be random homogeneous dispersions located at the edges 

of the graphene sheets.   
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Figure 51. SEM image of hybrid from WS2 plasma and TEGO.  

2. Physical Mixture Hybrid IF-WS2 and Graphene 

This mixture was also analyzed using XRD and SEM. 

 

 
Figure 52. XRD graphs of physical mixture hybrid.  
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The d-spacing was calculated using Bragg’s Law and determined in respective 

order of peak intensity and is 6.312 Å, 3.407 Å and 2.715 Å, miller indices WS2 (002), G 

(002) and WS2 (101) (see Figure 52). These values are similar to that above for the in-situ 

hybrid composite, which showed the presence of the graphene and the IF-WS2 although 

the intensity of the peaks is higher and each reflection in the spectra is more defined as 

illustrated in Figure 53. 

 
Material 2 Theta (°) {h j k} d-spacing (Å) 

Physical Mix IF-

WS2 and Graphene 

from Salts 

14.173 WS2 (002) 6.312 

26.053 G (002) 3.407 

36.968 WS2 (101) 2.715 

Table 11. XRD data for physical mixture hybrid. 

 
Figure 53. XRD graph of combined methods for producing hybrids. 
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Figure 54. SEM image of physical mixture hybrid.  

Figures 54 and 55 demonstrate that the exfoliation of the sheet was able to occur 

in the sample during the exfoliation process, as well as the dispersion of the IF-WS2 

occurred, with the IF-WS2 actually located in between the graphene sheets.   

 
Figure 55. SEM image of physical mixture hybrid to illustrate the IF-WS2 
agglomerates and the placement of the IF-WS2 between the graphene sheets. 

It should be noted that in the above image the IF-WS2 particles were 

approximately 100 nanometers in diameter, and they were able to go between a large 

space in between two graphene sheets. This phase distribution was the one we were 
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trying to obtain, and represents the achievement of the goal of creating a Graphene/IF-

WS2 hybrid in which both phases are randomly distributed at the nanometer scale. 

3. Nanoindentation 

After establishing protocols to integrate graphene with IF-WS2, both by an in-situ 

approach and by physically mixing the components in order to have a random 

distribution of one phase into the other, samples were tested using a nanoindentor. For 

reference, individual components, exfoliated graphene (TEGO), plasma produced IF-

WS2, a physical mixture hybrid composite and an in-situ hybrid composite at two 

different loadings, were tested via nanoindentation. For this testing, the hybrid comprised 

1% by weight of the total weight to the epoxy used (see Figure 56). Furthermore, for the 

composite samples the physical mixture was comprised of 1% IF-WS2 to 99% TEGO, 

one of the –in-situ hybrid composites was 1.5% IF-WS2 to 98.5%  TEGO by weight, and 

the other –in-situ hybrid composite was .5% IF-WS2 to 99.5% TEGO by weight. Those 

values have been summarized in Table 3. 

 

Loading Graphene - WS2 

Middle 98.5% - 1.5% 

Low 99.5% - 0.5% 

Physical Mix 99%  1% 

Table 12. Hybrid Composition by wt %. 

 
Figure 56. Picture showing an epoxy composite compared to the neat epoxy mounts. 
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Composites incorporating carbon nanostructures within a polymeric matrix have 

attracted significant attention due to their high stiffness and strength at relatively low 

content of carbonaceous material. Most published literature refers to systems in which the 

carbonaceous material is composed by carbon nanotubes or nanofibers [42]. Although, a 

major challenge for the success and effective use of such composite materials is to obtain 

a homogenous dispersion of the filler or granular material within the polymer matrix. The 

strong intermolecular van der Waals interactions between nanocarbon material parts (i.e., 

CNTs) along with their large surface area, result in the formation of conglomerates 

difficult to disperse. Moreover, achieving an acceptable level of adhesion between the 

nanocarbon phase and the polymer still remains a problem to be solved. Some of the 

routes followed for composite preparation include: solution mixing [43], melt 

compounding and in-situ polymerization [44]. 

Given the vast body of literature concerning epoxy resin composites, and the ease 

to form homogeneous dispersions of solids into the epoxy matrices, this thesis work was 

performed using such a system. By mixing the required amount of resin with the 1% of 

nanomaterials by stirring vigorously for two minutes and sonicating for three minutes, 

homogeneous mixtures were achieved. To this mixture the required amount of hardening 

agent was added and then stirred vigorously for a period of two minutes, after which the 

mixture was sonicated for another three minutes until homogeneous. In the case of this 

research, sonication techniques greatly improved the quality of the dispersion, 

overcoming the first obstacle normally encountered while generating composites. 

Notable from the nanoindentation results, is the fact that the addition of individual 

components (all in 1% loading) produced a modest increase in the elastic modulus of the 

composite (see Figures 57 and 58). Exfoliated graphene, TEGO, produced only about 3% 

increase when compared to IF-WS2 prepared by plasma routes, which shows a 6% 

increase. The reason for the different values of individual materials (Graphene vs. IF-

WS2) could be explained from the characteristics of each bonding type and the system 

components. It is our interpretation that the surface functionalities of graphene, namely 

oxygen groups in GO were removed to a large extent, by the exfoliation process, leaving 

carbon sheets of graphene that are difficult to attach by themselves to the polymeric 
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matrix. In contrast, WS2 structures could attach through sulfur bonds, to the epoxy resin, 

a process that has been observed in different sulfur containing species and are the base of 

vulcanization processes. The larger increase in elastic modulus by 12.23% (3.718 GPa to 

4.173 GPa) was observed for the physical mixture hybrid composite. We believe that the 

individual components were dispersed with more ease than the mixture of the same, 

aiding the curing process in the epoxy and reflected in the final values for elastic 

modulus.   

 
Figure 57. Histogram of elastic modulus computed via nanoindentation. 
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Figure 58. Histogram of normalized elastic modulus computed via nanoindentation. 

The greatest increase in mechanical properties for Graphene/IF-WS2 hybrid 

included as epoxy composites was observed for hardness values, which can be taken as a 

measure of how the material presents resistance to plastic deformation or cracking in 

compression. It can also be translated as a material having better wear properties. When 

comparing bare epoxy with individual components one could notice that graphene only 

presents a modest 3% improvement. Such value is much lower than the one observed in 

carbon nanofiber composites and might be related to a very weak interaction between the 

graphene layers and the epoxy resin. Moreover, it might also indicate that the dispersion 

of the fan like structures of graphene are far from ideal and the polymeric matrix did not 

reach the crevices and the gaps in the structure. Future steps will include the analysis of 

samples cross section to verify the dispersion of the component. Tungsten disulfide 

included as IF particles seems to have a improved hardness than graphene as individual 

component. As mentioned before, the sulfur in the structure is suspected to impose a 

different interaction and larger likelihood to promote C-S bonding with the matrix. 
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Exhibiting a 47.27% (0.165 GPa to 0.243 GPa) improvement in the hardness value when 

compared to bare epoxy, the 0.5% in-situ hybrid composite produced the most favorable 

results (see Figures 59 and 60). When the graphene/WS2 hybrids’ performance in epoxy 

resins is compared to CNF/IF-WS2 composites generated by ENS Michael Moberg (also 

an NPS graduate) [32], the CNF/IF-WS2 present a higher level of improvement (up to 

247% in hardness, 99% in modulus compared to bare epoxy). However, graphene based 

hybrids might have a better performance when used in a geometry that promotes the free 

movement of its layers, in a similar fashion than ballistic fibers do (illustrated in Figure 

61). 

 
Figure 59. Histogram of hardness computed via nanoindentation. 

0.165	
   0.17	
  

0.201	
  
0.211	
  

0.243	
  

0.16	
  

0	
  

0.05	
  

0.1	
  

0.15	
  

0.2	
  

0.25	
  

0.3	
  

Epoxy	
   TEGO	
  Powder	
   1%	
  WS2	
   Physical	
  Mix	
   In-­‐Situ	
  .5%	
   In-­‐Situ	
  1.5%	
  

Ha
rd
ne

ss
	
  a
t	
  M

ax
	
  L
oa

d	
  
in
	
  G
Pa

	
  

Samples	
  set	
  in	
  Epoxy	
  Resin	
  



 70 

 
Figure 60. Histogram of normalized hardness computed via nanoindentation. 
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absorption in the hybrid before include in the epoxy matrix to fully foresee the potential 
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and are related to the ability of the material to deform and regain their shape. 

 

100	
   103.030303	
  

121.8181818	
  
127.8787879	
  

147.2727273	
  

96.96969697	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

180	
  

Epoxy	
   TEGO	
  Powder	
   1%	
  WS2	
   Physical	
  Mix	
   In-­‐Situ	
  .5%	
  	
   In-­‐Situ	
  1.5%	
  

Ha
rd
ne

ss
	
  (%

)	
  

Samples	
  set	
  in	
  Epoxy	
  Resin	
  



 71 

 
Figure 61. Image showing the impact of a penetrator to a layer of fabric armor (from 

Stanford University’s AHPCRC, [online], Accessed 27 May, 2012). 

It has been hypothesized that IF-WS2 mechanisms for energy absorption could be 

related to the flexibility of the structure [25], since in the absence of a rigid core 

restrictions and given the hollow core morphology observed, the material will present a 

spring-like response to an applied shock. The passage of the shock will induce both 

elastic and plastic deformation within the IF or might also be capable of delaminating the 

outer layers, leaving most of the particle unchanged. The natural strain observed in the 

structure, both by XRD and TEM observations, caused by the curvature of the lattice to 

form cage like structures, will be then released. See Figure 62. 

 

 
Figure 62. Illustration of shockwave impacting an IF-WS2 and the associated 

expected methods of deformation. 
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V. CONCLUSIONS 

A. Milestones 

Making use of plasma based technology and exfoliation of graphitic oxide routes, 

we were able to generate graphene/IF-WS2 hybrids. Those were then included in epoxy 

matrices for selected mechanical properties determination. These novel light-weight 

composites showed moderate improvements for modulus of elasticity and hardness when 

compared to base epoxy, validating our hypothesis.   

Advantages of the novel methods used to fabricated the hybrids when compared 

to previous approaches include:  

Particles of WS2 generated from plasma WO3 present higher crystallinity than the 

ones produced from salts (NH4)2WS4 and similar to the IF-WS2 from commercial WO3. 

The latter do not completely sulfurize, as some of the oxides remain after the 

sulfurization step. Plasma generated IF-WS2 have smaller particle distributions (larger 

angles (greater than 90°) in polygonal edges, which when fully sulfurized are associated 

with better mechanical properties. All of the produced IF-WS2 particles contain hollow 

cores, as verified with TEM and FIB data, which is also associated with the ability to 

withstand shock waves.   

Graphene produced from exfoliated graphite oxide (GO) is a suitable material to 

fabricate Graphene/IF-WS2 hybrids, either as in-situ generated nanohybrid or as a 

physical mixture through the use of solvent and sonication. We used diverse amounts of 

IF-WS2 loadings (all with values less than 3%) to produce the composite materials. Only 

1% wt of the hybrid in epoxy produced significant changes in modulus and hardness 

values. Graphene/IF-WS2 hybrids included in epoxy matrices were created to compare 

with physical mixtures. We found the physical mixtures produced better dispersion of 

particles in the graphene honeycomb structures. A small but consistently measurable 

increase in elastic modulus and hardness was observed for the hybrid composites.  

Exhibiting a 47.27% (0.165 GPa to 0.243 GPa) improvement in the hardness 

value when compared to bare epoxy, the 0.5% in-situ graphene/IF-WS2 hybrid composite 
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produced the most favorable results. When the graphene/WS2 hybrids’ performance in 

epoxy resins is compared to CNF/IF-WS2 composites generated by ENS Michael Moberg 

(also an NPS graduate) [32], the CNF/IF-WS2 present a higher level of improvement (up 

to 247% in hardness, 99% in modulus compared to bare epoxy). However, graphene 

based hybrids might have a better performance when used in a geometry that promotes 

the free movement of its layers, in a similar fashion than ballistic fibers do. 

These hybrids are currently being tested for their shock absorbing properties—

with the possibility to be used as shock absorbing backing layer to reduce effects of blunt 

trauma. 

B. Next Steps 

The scaling up of the research involves further testing to determine the materials 

resistance to shock, now that impact resistance has been established through 

nanoindentation. The composite Graphene/IF-WS2 is being produced to provide 

nanopowder layers between current fabric technologies, while the nanopowder composite 

is also being mounted in an epoxy matrix to be layered between current fabric 

technologies. These mounted multi-layer fabric/composite material will be used to 

undergo shock resistance testing using military rounds.   

 
Figure 63. Illustration showing the shock resistance testing for the scaled up material 

using military rounds. 
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 Following the testing of the fabric/composite material, it will be subjected to post-

mortem analysis for the shock/rarefaction-induced plastic deformation, failure surfaces 

and morphology changes by SEM, TEM, XRD and any surface changes using Brunauer 

Emmett Teller Method. Through the testing we expect to show that these hybrids will be 

effective backing layers for the reduction of injuries sustained by our soldiers and sailors 

from blunt trauma.   
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